Alternative splicing as a molecular switch for Ca2+/calmodulin-dependent facilitation of P/Q-type Ca2+ channels.
نویسندگان
چکیده
Alternative splicing of the P/Q-type channel (Ca(V)2.1) promises customization of the computational repertoire of neurons. Here we report that concerted splicing of its main alpha1A subunit, at both an EF-hand-like domain and the channel C terminus, controls the form of Ca2+-dependent facilitation (CDF), an activity-dependent enhancement of channel opening that is triggered by calmodulin. In recombinant channels, such alternative splicing switches CDF among three modes: (1) completely "ON" and driven by local Ca2+ influx through individual channels, (2) completely "OFF," and (3) partially OFF but inducible by elevated global Ca2+ influx. Conversion from modes 1 to 3 represents an unprecedented dimension of control. The physiological function of these variants is likely important, because we find that the distribution of EF-hand splice variants is strikingly heterogeneous in the human brain, varying both across regions and during development.
منابع مشابه
Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells.
P/Q-type (Ca(V)2.1) and N-type (Ca(V)2.2) Ca2+ channels are critical to stimulus-secretion coupling in the nervous system; feedback regulation of these channels by Ca2+ is therefore predicted to profoundly influence neurotransmission. Here we report divergent regulation of Ca2+-dependent inactivation (CDI) of native N- and P/Q-type Ca2+ channels by calmodulin (CaM) in adult chromaffin cells. Ro...
متن کاملDevelopmental activation of calmodulin-dependent facilitation of cerebellar P-type Ca2+ current.
P-type (CaV2.1) Ca2+ channels are a central conduit of neuronal Ca2+ entry, so their Ca2+ feedback regulation promises widespread neurobiological impact. Heterologous expression of recombinant CaV2.1 channels demonstrates that the Ca2+ sensor calmodulin can trigger Ca2+-dependent facilitation (CDF) of channel opening. This facilitation occurs when local Ca2+ influx through individual channels s...
متن کاملAlternative splicing of the Ca(v)1.3 channel IQ domain, a molecular switch for Ca2+-dependent inactivation within auditory hair cells.
Native Ca(V)1.3 channels within cochlear hair cells exhibit a surprising lack of Ca2+-dependent inactivation (CDI), given that heterologously expressed Ca(V)1.3 channels show marked CDI. To determine whether alternative splicing at the C terminus of the Ca(V)1.3 gene may produce a hair cell splice variant with weak CDI, we transcript-scanned mRNA obtained from rat cochlea. We found that the alt...
متن کاملMolecular determinants of Ca(2+)/calmodulin-dependent regulation of Ca(v)2.1 channels.
Ca2+-dependent facilitation and inactivation (CDF and CDI) of Cav2.1 channels modulate presynaptic P/Q-type Ca2+ currents and contribute to activity-dependent synaptic plasticity. This dual feedback regulation by Ca2+ involves calmodulin (CaM) binding to the alpha1 subunit (alpha12.1). The molecular determinants for Ca2+-dependent modulation of Cav2.1 channels reside in CaM and in two CaM-bindi...
متن کاملModulation of CaV2.1 channels by the neuronal calcium-binding protein visinin-like protein-2.
CaV2.1 channels conduct P/Q-type Ca2+ currents that are modulated by calmodulin (CaM) and the structurally related Ca2+-binding protein 1 (CaBP1). Visinin-like protein-2 (VILIP-2) is a CaM-related Ca2+-binding protein expressed in the neocortex and hippocampus. Coexpression of CaV2.1 and VILIP-2 in tsA-201 cells resulted in Ca2+ channel modulation distinct from CaM and CaBP1. CaV2.1 channels wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 28 شماره
صفحات -
تاریخ انتشار 2004